

Cable for Wireless Power Transmission in Transportation Applications

S. K. Podilchak, V. Buendía, G. Goussetis, A. Costanzo, P. Nicole School of Engineering and Physical Sciences Heriott-Watt University

Overview

- Introduction
- Component Design
- System Results
- Conclusions

Introduction

- Objective
 - Provide selective coverage throughout a corridor
 - Aeronautical applications (airplanes, subways, tunnels..)
 - Ensure the uniform power coverage at the tag
- Motivation
 - RFID tags working at microwaves frequencies
 - Evolve cable system towards wireless systems

Why WPT and Communications

- Wireless power transmission and communication by RFID principles
- Transmits the identity of objects

- Useful for so many fields (distribution, medicine, environment..)
- System based in the communication between a reader and a tag

Why WPT and Communications

- Reader interrogates the tag through a EM wave
- Tag responds modulating backscattered signal with its unique ID
- The reader decodes the ID from the tag
- Detected information is provided to the host computer

System Polarization

- Significant difference between circular and linear polarization in a RFID system
- Linear polarized (LP) reader antennas:
 - Known RFID tag orientation
 - Tag at the same plane and about the same height
- Circular polarized (CP) reader antennas:
 - Unknown or inconsistent tag orientation
 - No matter the location of the tag inside the read range
 - High losses

State Of The Art

- Dual-Band circularly polarized Microstrip RFID Reader Antenna [1]
 - Using metamaterial branch-line coupler
 - Antenna Gain of 7.9 dBic
 - Ideal for UHF and ISM bands

[1] Y. Jong, B. Lee, "Dual-Band Circularly Polarized Microstrip RFID Reader Antenna Using Metamaterial Branch-Line Coupler", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 2, FEBRUARY 2012

State Of The Art

- Size reduction of a circularly polarized square microstrip patch for RFID applications [2]
 - Reduction of 43.05% in patch length achieved
 - 67.56% in area compared to conventional design
 - Gain smaller than conventional one (6.6 dBi compared to 7 dBi)

[2] D.L. Nguyen, K.S Paulson, N.G. Riley, "Reduced-size circularly polarised square microstrip antenna for 2.45 GHz RFID applications", IET Microw. Antennas Propag., 2012, Vol. 6, Iss. 1, pp. 94–99

State Of The Art

- Broadband passive tag for Near-field applications [3]
 - Minimizes the influence of human body, liquids or metals without sacrificing read range and universal UHF RFID band interoperability
 - Broadening reached with slots in the top of the metallization

ulations) of BTA1 antenna for near-body and in free space (Air) conditions.

[3] A. Santiago, J. Costa, C. Fernandes, "Broadband UHF RFID Passive Tag Antenna for Near-Body Applications", IEEE ANTENNAS AND WIRELESS PROPAGATIONAL LETTERS, VOL. 12, 2013

This Work: Possible Antenna Modules

Configuration #1

Configuration #2

System Design

- Frequency: 2.45 GHz
- Total coverage of the system: 16 m x 2.5 m
- Smart cable length: 14.4 m
- Patch coverage: 3.2 m
- Substrate:
 - FR-4
 - Height: 1.6 mm

Hotspot Design

- Inset fed patch antennas for all hotspots
- Switches to control power flow instead of Wilkinson power dividers
- Branch line couplers as feeders
 - Low losses
 - Easy control of the power split ratio
- Improved system efficiency with Configuration #2.

- Power entering input port is divided between the two output ports
- Minimal power is coupled to the isolated port
- Unequal Split Ratio
 - Varying the impedance of each pair of arms

• Theoretical power levels:

HS	Power Diverted to the Antenna	Power Passing to the Next HS	Power Level on the Antenna (dB)	Power Level on the Output (dB)
1	20%	80%	-6.99	-0.99
2	25%	75%	-6.02	-1.24
3	33%	66.7%	-4.78	-1.76
4	50%	50%	-3.01	-3.01
5	100%	-	0	-

al uk

bal .uk

bal :.uk

bal c.uk

Distinctly Global www.hw.ac.uk

Hotspot Design: MEMS Switches

- Analog Devices
- 0.28 IL
- Complicated design
- Lack of equipment (in-house) for building and soldering

Hotspot Design: Switches

- SKYA21001
- 20 MHz to 3 GHz
- 0.4 dB IL
- Ease of design

Hotspot Design: Switches

Hotspot Design: Final Prototypes

System Results: Hotspot 2

System Results: Hotspot 2

ctly Global ww.hw.ac.uk

Comparison of all Results for Hotspot 2

Element	S21 Expected	S21 Measured	Losses Measured
Branch-Line	-2.74 dB	Not fabricated	Not fabricated
Passive Hotspot	- 2.74 dB	- 2.82 dB	1.58 dB
Test Circuit	- 1.26 dB	-1.47 dB (Port 2 ON)/ -1.57 dB (Port 3 ON)	0.21 dB(Port 2 ON)/ 0.31 dB(Port 3 ON)
Final Prototype	- 5.26 dB(On case)/ - 2.36 dB (Off case)	-5.03 dB (On case)/ -2.8 dB (Off case)	3.79 dB (On case)/ 2.8 dB (Off case)

Power Budget Analysis

- Design for uniform power coverage
- First antennas must absorb a smaller fraction of power
- Free space loss at max. distance: -49.47 dB
- Worst case scenarios:
 - Only last element radiates
 - All element are radiating

Configuration #1

Configuration #2

System Analysis: Worst Case 1 (No Switches)

Hotspot	Power Absorbed Configuration #1 (mw/dBm)	Power On System* Configuration #1 (mw/dBm)	Power Absorbed Configuration #2 (mw/dBm)	Power On System* Configuration #2 (mw/dBm)
In	-	1000/30	-	1000/30
1	-	417.15/26.20	-	568.9/27.55
2	-	161.65/22.08	-	303.4/24.82
3	-	62.64/17.96	-	162.2/22.1
4	-	24.27/13.85	-	91.62/19.62
5	19.73/12.95	-	74.47/18.72	-

*After the hotspot (taking into account hotspot and coaxial losses).

- Configuration #1 using Wilkinson PDs
- Power transferred to last antenna: 12.95 dBm
- Power radiated by last antenna: ~ 6.47 dBm
- Considering a tag with 0 dB Gain

Power received: -40 dBm

- Configuration #2 using branch line couplers
- Power transferred to last antenna: 18.72 dBm
- Power radiated by last antenna: ~ 9.36 dBm
- Considering a tag with 0 dB Gain

Power received: -37.35 dBm

- Configuration #1 using Wilkinson PDs
- Power transferred to last antenna: 6 dBm
- Power radiated by last antenna: ~ 3 dBm
- Considering a tag with 0 dB Gain

Power received: -43.72 dBm

- Configuration #2 using branch line couplers
- Power transferred to last antenna: 14.42 dBm
- Power radiated by last antenna: ~ 7.21 dBm
- Considering a tag with 0 dB Gain

Power received: -39.51 dBm

Power Budget Analysis Active Configuration #2 (Switches)

- Worst case 1 only the last element radiates
 - Power transferred to the antenna: 14.02 dBm
 - Power radiated: 7.01 dBm
 - Power received: -42.46 dBm
- Worst case 2 all elements radiate
 - Power transferred to the antenna: 3.03 dBm
 - Power radiated: 1.5 dBm
 - Power received: -47.97 dBm

Power Budget Analysis Active Configuration #2 (Switches)

Power Budget Analysis Active Configuration #2 (Switches)

www.hw.ac.uk

Conclusions

- The design of each hotspot is essential for the efficient operation of the system.
- The minimum amount of power radiated in each hotspot must ensure adequate coverage along the floor.
- Necessary optimization for decreasing the losses inside the hotspot.
- Good application for the RFID and WPT applications.

Aknowledgement

This work was partly supported by the IC1301 WiPE COST action.

Thank you, any questions?